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1. INTRODUCTION

This report describes continued experimental work performed on the axisymmetric, single-

driver, shock-tube model of a large blast simulator (LBS) located at the Centre d'Etudes de Gramat

(CEG), France. The purpose of this work remains the same as that in the previous report: to

provide data for comparison with computer codes, to assist in the design, and to assess

modifications to a large blast thermal simulator (LB/TS) contemplated for the U. S.' In particular,

a more extensive and better instrumented set of heated-driver gas tests was made. A few

preliminary, heated-driver tests had been made earier.2 Also, tests were made without the diverging

nozzle section following the nozzle throat/diaphragm station, opening discontinuously to the full-

driven tube diameter. These discontinuous expansion tests were made to determine whether one

could smooth the initial pressure spike noted in the pressure waveform at the lower shock pressure

levels, when using the conical expansion section.

The last section presents a set of tests performed with the original converging/diverging

nozzle, but with an enlarged throat, to give a driven-tube-to-throat-area ratio of 16 rather than the

original ratio of 29, as for the CEG design. The objective for these last tests was to determine the

performance gain over the original design in order to achieve shock over-pressures of up to 35 psi

(240 kPa) and as an alternative to the engineering problems arising from driver-gas heating and

from the construction and operation problems of a cold-driver facility. These questions and the

work performed are discussed in the following sections.

2. LBS MODEL AND TEST PROCEDURES

The LBS model is the axisymmetric, 2-dimensional model constructed to 1:37 scale of the

CEG multidriver facility.3 For completeness, a sketch is shown of the internal geometry of the

model. One design feature in particular should be noted: There is an annular plate that is removed

above certain shock pressure levels and allows outside air to be entrained, resulting in an extension

of the waveform's positive duration (corresponding to changes in weapon yield). This feature is

not used in the tests, described in Sections 3 and 4, to facilitate computer modelled comparisons.

The basic instrumentation consists of PCB piezoelectric pressure gages and Endevco semiconductor,

four-bridge-wire, strain-gage transducers to monitor static and stagnation pressures along the driven

tube and at the test station 7. The station numbers correspond to tube d ,,ters down the driven
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section measured from the nozzle exit as before.' Analog tape recorders acquire the pressure and

other data, which are then digitized off-line for analysis.

3. HEATED DRIVER GAS TESTS

Heating of the driver gas offers two advantages over normal shock tube operation. It permits

pressurizing the driver to more moderate levels for the same shock-pressure level and, hence, makes

feasible less massive driver tubes, and it mitigates the disturbing effects of cold-driver gas arrival at

the test station. A series of heated-driver gas shots was made to provide data and to establish

performance for a complex geometry shock tube. The method of heating was reported in

Reference 2.

Essentially, a number of resistance heater strips distributed about the driver tube periphery

brought the driver wails and the contained driver gas to high temperature. For the present tests,

Omega Corporation chromel-alumel thermocouples protruding approximately 2.54 cm into the

interior volume monitored the driver gas temperature. This arrangement allowed for more

confidence in the temperature read out over that used for the earlier, preliminary tests, in which the

present thermocouples were unavailable. It is worth noting that the external, wall-mounted

thermocouple, as used in preliminary experiments and retained here for a check on the previous

data, gave driver-gas temperatures within 10-150 F of the interior-reading thermocouples. A

divergence in readings occurred only during the inletting of gas, occasioning local temperature

fluctuations that clearly are not followed by the exterior walls.

A temperature range of 423-533 K (300-500 F) was used. Shots are listed in Table 1, and

Figure 2 illustrates the LBS Model performance with heated driver gas. Shown for comparison are

results from previous runs with cold driver gas.'- This series of shots was performed with annular

plate in place, preventing entrainment of outside air, to permit more convenient computational

modelling of the tube geometry for theoretical comparison. The increased performance gain using

the heated driver is clearly evident. At the highest shock pressure of 225 kpa (33 psi) the driver

pressure required, when T4/TI=l.75, is only about one-half that for the cold driver.

A calculation for the driver gas temperature ratio and flow conditions required for "matched"

conditions across the contact surface has been made by Pearson,' using the BRL QID code.

Essentially, a trial and error procedure was used to find the smoothest dynamic pressure trace in the

region of the contact surface. This gave the flow conditions necessary to achieve matched density

across the interface.
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TABLE 1. Heated Driver Gas Flow Conditions.

Shot no. P4/PI AP2, psi AP2, kPa P2/Pt T4/T1

2 106 32.6 225 3.21 1.75

4 80.2 28 193 2.89 .75

5 90.7 30.5 210 3.06 1.75

6 77.7 26.8 185 2.8 1.75

7 58.3 25.4 175 2.71 1.75

8 61.7 23.2 160 2.57 1.75

9 50.4 18.9 130 2.27 1.75

19 31.4 13.5 93 1.91 1.75

20 20.6 10.2 70 1.69 1.75

22 167 41 283 3.79 1.75

23 132 34.8 240 3.37 1.75

10 56.9 20.6 142 2.4 1.59

11 68.6 25.4 175 2.71 1.59

12 45.9 18.1 125 2.22 1.59

13 54.4 20.3 140 2.37 1.59

17 22.6 10.9 75 1.73 1.59

18 33.4 14.5 100 1.98 1.59

14 38.8 16.7 115 2.13 1.41

15 47.6 18.9 130 2.27 1.41

16 60.8 21 145 2.42 1.41

Note: P4/P1 and T4/TI are driver gas pressure-temperature ratios, PI and TI being
the ambient; AP2 is the shock over-pressure; P2/Pl is shock pressure ratio or
shock strength.
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The use of natural bursting of diaphragms by overpressure and the limited selection of

diaphragms available prevented achievement of precisely the flow condition believed necessary.

However, achievable shots with flow conditions bracketing the matched condition were believed

sufficient to check the theoretical points; for driver/shock pressures to the high side of that

predicted for a given temperature matching, the stagnation pressure trace would respond to the

higher temperatumre, lower-density-shocked gas, then lead to a "jump" in the trace indicating the

colder, higher-density driver gas flowing over the gage. For the opposite situation of driver/shock

pressure to the low side for matching, the driver gas will be warmer, and less dense than the

shocked gas; hence, a drop in the stagnation pressure trace would signal the arrival of driver gas

following the shocked gas.

The actual records do not, unfortunately, reveal such detail because of the inherent noisiness.

of the traces. As an example, the stagnation traces for the shots grouping about the matched

condition P4/PI=87 (APs=I75 kpa) and T4rr-ll.75 (re Pearson4) ar shown in Figures 3a-e. The

flow parameters for these shots are found in Table 1. The shots are shown in descending order of

shock strength, with shot 85-7 as the "matching condition." Shots 85-5 and -6 are to the high side,

and spikes occurred some 4 msec after shock arrival of these two shots. Shots 85-8 and -9 are to

the low side of the matched condition. However, it is not possible to detect any drop in pressure

level with the expected contact surface arrival within 5 msec after the shock. These tests, plus

others grouping about Pearson's "matched" flow conditions, are graphed in Figure 4 as the open

symbols. Pearson's predicted points are the closed symbols, at the T4JT1 as specified on the graph.

From these few data, a marked discrepancy can be detected between the predicted shock pressures

and the experimentally determined shock pressures at matching conditions for a given T4/TI. The

reason for this is not clear, although the agreement between predicted and experimental cold-driver

results is reasonable.! Further computational work is planned, including use of a new 2D BRL

code.

4. DISCONTINUOUS AREA FOLLOWING NOZZLE THROAT

The pressure traces from a low-level shot series reported in Reference I are reproduced in

Figure 5. One may discern evidence of a leading pressure "spike" in the waveforms, as was seen

in the full-scale CEG results, a low-level example from which is shown in Figure 6. The spike is

typically about 30-msec width in the full-scale facility, and it corresponds to the LBS Model's spike

width when scaled by the 1/37 factor. The leading pressure spike is also noted in the LBS model

computations with the BRL QID code.'-

6



TESTI LBS MWE Al
409 SrOT SD 85-

STATID~e 73

3"

20a Conditions to *high" side-P4/Pl--91, A P2*210 kPa.

5Ill 15 28 25 38
"I's 2636 .
TMC, NsEC

TESTs LOS HM Al
40- SHtst SD 548

STATIOda 75

30

,90 b. Conditions to high side-P4/P1=79, AP2=185 kPa.

Is

I's i' tO 2S 30 35

TIM, HSEC

TESTs a.8 LBS ME A I
400 SOT SD 85-7

STATIMON 7S

300

c. Matched interface condition--P4/P1=58, A =175 kPa.

TM, PlEC

Figure 3, a-e. Stagnation pressure traces at conditions grouping about interface matched
conditions, for T4Tl-l.75.

7



TESTi LBS MODE At
406 SHOT s SD "5-

STATIONi 7S

3W

d. Conditions to "low"P side-P4/Il=62, AP2=160 kPa.

10- 51 I15 i'9 36 35

TEST LBS MODEL. Al

STATION. 73

e. Conditions to low side--P4/Pl=50, AnP=13O kPa.

Figure 3. (Concluded)

8



C4

I- 
0

o~ E
0 <

Z 00

u LI

LU (A

0 0 0 c r

zo<

UAU

<- UUUA l

LL. 
0

0 X 0OL

u a-

a: L-

< 
9L



TEST; LBS MODEL At

so We

8U

7m "SS

atm
as

200

TD(. M=

IMST LBS MODEL A2

so m

21W

01



Cq4

04
U-

4 LL

0 0

~c~I 012
z~u~ - U

2

~~Oa

co2

oo NOC

DdM '3nSS30



Figure 7 is a figure reproduced from Reference 5 showing how a change in nozzle

configuration with respect to the driven tube can influence the amplitude of the spike. Apparently,

a nozzle opening to the full driven tube diameter induces a more severe spike, at all nozzle half

angles considered, than the LBS Model nozzle, which opens only partially, then forms a

discontinuous area jump to the driven tube area. The evidence suggests that the spike might be

avoided by removing the divergent nozzle and discontinuously opening the throat of the nozzle to

the driven tube area.

As an experimental check, an assembly without divergent nozzle, the nozzle throat opening

directly into the driven tube, was installed in the LBS Model, and some low shock pressure tests

were perfonned (Table 2). The annular plate was kept in place (no air entrainment) to facilitate the

comparison with the computer model. Figure 8 shows results, for stations grouping about the test

station 7, for two shock conditions. The smoothing of the initial spike, if any, is somewhat

questionable in view of the noisiness of the traces. However, the waveforms are not noticeably

worsened by the use of the sharp area change to the driven tube. This finding may obviate the

need for a diverging nozzle section following the diaphragm throat, with consequent cost savings in

construction. This conclusion should be checked in the new BRL Multi-Driver Shock Tube facility.

Without refinement of the instrumentation for these shots, further conclusions at this time cannot be

made with regard to spike formation.

5. TESTS WITH ENLARGED THROAT

Some tests were performed with the LBS Model's throat enlarged to 6.35 cm (2.5 in) from

the original 4.72 cm (1.86 in). Enlarging the throat tends toward the 1:1 throat area ratio of the

simple straight-shock tube and, thus, should give a stronger shock for a given driver pressure.

Desired performance levels could be achieved at lower maximum driver pressures, which cause less

stress in tubing walls and require less critical welds in overly thick tubing. The modification leads

to a throat-to-driven-tube-area ratio of 1:16, compared to the original LBS Model and CEG Facility

ratio of 1:29. Demonstration of sufficiently enhanced performance with the enlarged throat area

would support a useful design consideration for the full-scale LB/TS Facility.

Thus, the converging-diverging throat of the LBS Model was bored out to the requisite throat-

area ratio. The axial length scale for the throat naturally was destroyed, but this feature was

deemed not essential for the interpretation of the results. The results and the flow conditions for a

small set of tests at the higher shock pressure levels are exhibited in Table 3. Results are also

plotted in Figure 9 to show comparison with previous data. The enhanced performance is clearly

12
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TABLE 2. Low-Level Shot Series with Discontinuous Area Opening from Diaphragm Throat.

Shot no. P4/P1 A2, psi AP2, kPa P2/Pl

25 27.9 10.4 72 1.70

26 41.6 13.3 92 1.89

27 51.2 14.1 97 1.94

28 50.5 14.2 98 1.95

29 88.1 20.6 142 2.38

30 115 24.2 167 2.62

31 135 27.6 190 2.85

TABLE 3. Flow Conditions and Results for Enlarged Throat.

Shot no. P4/Pl AP2, psi AP2, kPa P2/Pl

32 21.2 12.2 84 1.82

33 34 17 117 2.14

34 39 18.9 130 2.27

35 83 28.3 195 2.89

36 108 32.2 222 3.16

37 113 33.4 230 3.24

38 114 32.6 225 3.19

39 133 34.4 237 3.31

40 161 35.5 245 3.41
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observed. The levels are comparable to those of the heated-driver-gas tests at T4/rl=1.75

(T4=500 F), previously obtained. However, with the present unheated driver gas, one must expect

disruption of tests in which drag is a sensitive factor, when the cold driver gas arrives at the test

station, unless one moves the test station farther downstream to mitigate such effects. Then, the

shock pressure levels may decay to levels below those desired.

6. CONCLUSIONS AND SUMMARY REMARKS

In previous reports concerning the operation of the 1/37 scale LBS ModeLt- the model

performance was determined for shock overpressures to better than 200 kpa (30 psi), and various

properties of the produced flow were examined. Detailed comparisons were made with predictions

obtained from a new BRL QID code to assess the code's ability to predict flows from a complex

geometry shock tube. In this report, further experimental work has been performed with the

objective of looking at modifications to the basic geometry or operation of the LBS.

Specifically, tests with heated driver gas were performed. Appropriate heating produces higher

strength shocks at lower driver pressures and matches the dynamic pressure across the contact

surface (driver/driven gas interface). Important operational benefits are gained, together with a

lighter constrcon. Some tests using a discontinuous nozzle and throat-to-driven-tube opening

were made in an effort to remove an initial pressure spike noted in both the model and the full-

scale facility test results, as well as in the computed BRL-QID simulations. The experimental

results were inconclusive in this regard, due to noisiness of traces. However, the results did

suggest that flow quality was not worsened when the divergent nozzles were omitted. Thus,

material costs and operating efficiencies could be affected by using such discontinuous nozzles.

Tests in the new BRL Multi-Driver Shock Tube model should also be done to verify talt the flow

quality is indeed maintained for the seven area discontinuities in that configuration. Finally, a few

tests with enlarged throat diameter (1/16 throat-driven-tube area versus the original 1/29 scale)

showed performance enhancement comparable to that achieved with the driver gas heating

experiments.
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